Sistem pembuktian nol pengetahuan Nova yang inovatif: R1CS yang dilonggarkan meningkatkan efisiensi dan jangkauan aplikasi

robot
Pembuatan abstrak sedang berlangsung

Nova: Sistem zk-SNARKs yang Baru

Nova adalah sistem bukti nol baru yang dikembangkan oleh Microsoft, yang menggunakan sistem ( Relaxed Rank-1 Constraint Systems, teknologi Relaxed R1CS) untuk meningkatkan efisiensi dan fleksibilitas bukti.

Keunggulan Nova

Keunggulan utama Nova terletak pada teknologi R1CS yang dilonggarkan. Sistem R1CS tradisional memerlukan penggunaan banyak keacakan selama proses pembuktian, yang mengakibatkan proses pembuatan dan verifikasi bukti menjadi rumit dan memakan waktu. Nova, dengan menggunakan R1CS yang dilonggarkan, memungkinkan penggunaan keacakan yang lebih sedikit dalam bukti, secara signifikan meningkatkan efisiensi pembuktian.

Nova juga mendukung perhitungan inkremental, yang memungkinkan perhitungan fungsi kompleks secara bertahap, tanpa harus menghitung seluruh fungsi sekaligus. Ini sangat berguna saat menangani data berskala besar atau melakukan perhitungan kompleks. Selain itu, Nova juga mendukung perhitungan polinomial, yang dapat menangani tugas pembuktian yang lebih kompleks.

Kekurangan Nova

Nova menggunakan R1CS yang dilonggarkan, yang buktinya mungkin tidak sekuat sistem R1CS tradisional. R1CS yang dilonggarkan memungkinkan penggunaan lebih sedikit keacakan, yang mungkin mengurangi keamanan bukti. Namun, pengembang Nova telah mengambil beberapa langkah untuk mengatasi masalah ini, seperti menggunakan algoritma kriptografi yang lebih kuat dan strategi bukti yang lebih kompleks.

Implementasi Nova relatif kompleks, yang mungkin meningkatkan kesulitan penggunaan dan pemeliharaan. Nova menggunakan banyak teknologi kriptografi tingkat lanjut, seperti perhitungan polinomial, operasi grup, dan oracle acak, yang memerlukan pemahaman mendalam tentang teknologi ini untuk dapat menggunakan dan memodifikasi Nova secara efektif.

Posisi Penting Nova di Bidang zk-SNARKs

Nova memiliki posisi penting di bidang zk-SNARKs. Kehadirannya membuka jalan baru untuk perkembangan zk-SNARKs. Teknologi R1CS yang dilonggarkan yang digunakan oleh Nova membuat proses pembuatan dan verifikasi bukti menjadi lebih efisien, yang sangat penting untuk aplikasi zk-SNARKs berskala besar. Selain itu, Nova juga mendukung perhitungan inkremental dan perhitungan polinomial, yang dapat menangani tugas bukti yang lebih kompleks, lebih lanjut memperluas jangkauan aplikasi zk-SNARKs.

Penjelasan Kode Sumber Nova

Sumber kode Nova terutama terdiri dari beberapa bagian berikut:

  • bellperson/: Berisi kode tentang algoritma Bellman-Ford.

  • gadgets/: Termasuk alat untuk membangun bukti zk-SNARKs.

  • provider/: Berisi beberapa kode penyedia, seperti implementasi fungsi hash Keccak.

  • spartan/: Berisi kode tentang protokol Spartan.

  • traits/: Berisi beberapa trait Rust, digunakan untuk mendefinisikan perilaku publik.

Modul utama termasuk:

  • r1cs: Termasuk kode terkait R1CS.

  • shape_cs: Termasuk kode terkait sistem pembatasan bentuk.

  • solver: Mengandung kode untuk menyelesaikan sistem kendala.

  • sirkuit: mendefinisikan sirkuit yang ditingkatkan dalam protokol Nova.

  • nifs: Mewujudkan skema lipatan non-interaktif.

  • ipa_pc: Membangun mesin evaluasi untuk skema komitmen polinomial berbasis IPA.

  • keccak: Mengimplementasikan TranscriptEngineTrait yang menggunakan fungsi hash Keccak256.

  • polinomial: Mendefinisikan tipe dan operasi dasar yang terkait dengan polinomial.

  • sumcheck: Mengimplementasikan algoritma Sumcheck dalam protokol Spartan.

Modul-modul ini bersama-sama membentuk fungsi inti Nova, termasuk sistem pembatasan R1CS, perhitungan polinomial, generasi dan verifikasi zk-SNARKs, dan lain-lain. Nova mencapai sistem zk-SNARKs yang efisien melalui kombinasi modul-modul ini.

ZK5.59%
Lihat Asli
Halaman ini mungkin berisi konten pihak ketiga, yang disediakan untuk tujuan informasi saja (bukan pernyataan/jaminan) dan tidak boleh dianggap sebagai dukungan terhadap pandangannya oleh Gate, atau sebagai nasihat keuangan atau profesional. Lihat Penafian untuk detailnya.
  • Hadiah
  • 1
  • Bagikan
Komentar
0/400
BankruptcyArtistvip
· 07-23 09:55
Apakah privasi mengorbankan efisiensi?
Lihat AsliBalas0
Perdagangkan Kripto Di Mana Saja Kapan Saja
qrCode
Pindai untuk mengunduh aplikasi Gate
Komunitas
Bahasa Indonesia
  • 简体中文
  • English
  • Tiếng Việt
  • 繁體中文
  • Español
  • Русский
  • Français (Afrique)
  • Português (Portugal)
  • Bahasa Indonesia
  • 日本語
  • بالعربية
  • Українська
  • Português (Brasil)